Зарядное Устройство С Регулировкой По Первичной Обмотке

Простая схема зарядного устройства. Зарядное устройство. Первичной обмотке. Особенность данного зарядного устройства в том, что регулировка зарядного тока осуществляется по первичной обмотке силового трансформатора. Такое решение позволило снизить токи в цепях регулятора, а следовательно избавится от теплоотвода для тиристора. Зарядное устройство.

Как извесно из законов работы трансформатора ток в первичной обмотке, если трансформатор понижающий, меньше тока во вторичной обмотки в отношение напряжений или количества витков трансформатора. Я считаю хорошим зарядным устройством если оно способно выдавать 10А на выходе. На входе трансформатора будет 10/(220/15)= 0,7А. Согласитесь, током легче управлять если он меньшей величины.

Зарядное устройство с регулировкой тока по первичной обмотке приведено ниже: Схема очень простая и не требует наладки. Диоды моста в низковольтной сети необходимо установить на радиатор. Поскольку тиристор КУ202Н будет нагружен менее чем на 10% на радиатор его устанавливать нет смысла, он может быть установлен прямо на печатную плату.

Пример собранной схемы на печатной плате приведен на фото. Данное зарядное устройство высоконадежное и простое в сборке. Единственное что надо иметь - это трансформатор от 200 Вт, хотя это условие распространяется практически на все зарядные устройства.

Как сделать самодельное автоматическое Зарядное устройство для автомобильного аккумулятора На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38. Почему нужно заряжать аккумулятор автомобиля зарядным устройством Аккумулятор в автомобиле заряжается от электрического генератора. Для обеспечения безопасного режима зарядки аккумулятора после генератора устанавливают реле-регулятор, обеспечивающий напряжение зарядки не более 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение 14,5 В. По этой причине зарядить аккумулятор на 100% генератор автомобиля не может. Поэтому необходимо периодически аккумулятор заряжать внешним зарядным устройством. В теплый период времени обеспечить пуск двигателя может аккумулятор заряженный всего на 20%.

При отрицательных температурах емкость аккумулятора уменьшается вдвое, а пусковые токи из-за загустевшей смазки двигателя возрастают. Поэтому если своевременно не зарядить аккумулятор, то с наступлением холодов двигатель может не запуститься.

Анализ схем зарядных устройств Для служат зарядные устройства. Его можно купить готовое, но при желании и небольшом радиолюбительском опыте можно сделать своими руками, сэкономив при этом немалые деньги. Схем зарядных устройств автомобильных аккумуляторов в Интернете опубликовано много, но все они имеют недостатки. Зарядные устройства, сделанные на транзисторах, выделяют много тепла, как правило, боятся короткого замыкания и ошибочного подключения полярности аккумулятора. Схемы на тиристорах и симисторах не обеспечивают требуемой стабильность зарядного тока и издают акустический шум, не допускают ошибок подключения аккумулятора и излучают мощные радиопомехи, которые можно уменьшить, одев на сетевой провод.

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать. В результате получилась схема зарядного устройства для аккумуляторов в которой нет выше перечисленных недостатков. Более 15 лет заряжаю самодельным конденсаторным зарядным устройством любые кислотные аккумуляторы на 12 В.

Устройство работает безотказно. Принципиальная схема автоматического зарядного устройства для автомобильного аккумулятора При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.

Если схема для повторения Вам показалась сложной, то можно собрать более, работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора. Схема ограничителя тока на балластных конденсаторах В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9.

Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора. Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая.

Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя. Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы. Таблица емкости конденсаторов в зависимости от величины тока заряда аккумулятора Ток заряда аккумулятора, А 0,5 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 Номинал конденсатора, мкF 1,0 3,4 8,0 12,0 16,0 20,0 24,0 28,0 32,0 36,0 Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров. Схема защиты от ошибочного подключения полюсов аккумулятора Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки.

Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству. Схема измерения тока и напряжения зарядки аккумулятора Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину зарядки,. При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ при полной зарядке аккумулятора Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта. Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В.

Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора. Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора. Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А.

В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время.

После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом. Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.

Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу. К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно.

Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже. На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5.

Тут так же установлен предохранитель Пр1 на 1 А и вилка, (взята от компьютера) для подачи питающего напряжения. Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса.

Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на не закрепленную планку из фольгированного стеклотекстолита. На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета., идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм 2. Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски.

Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3.

На стрелочный прибор от шунта идут желтый и красный провод. Печатная плата блока автоматики зарядного устройства Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству на печатной плате из фольгированного стеклотекстолита.

На фотографии представлен внешний вид собранной схемы. Рисунок схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм. На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы. Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.

А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом. Шкала вольтметра и амперметра зарядного устройства Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу. Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В. Провода для подключения АЗУ к клеммам аккумулятора и сети На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники.

Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм 2. К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов. О деталях зарядного устройства Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А.

Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального. Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 - любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения.

Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме. В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двух полярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В.

Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно. Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки.

В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме. Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора. Настройка блока автоматической регулировки и защиты АЗУ При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А.

Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В. Проверка стабилизатора напряжения После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна. Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности.

Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ. Проверка системы защиты от перенапряжения Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания. Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ). Принцип работы операционного дифференциального усилителя Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется не инвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим.

Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений. Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится. Проверка схемы защиты от перенапряжения Вернемся к схеме.

Неинвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В.

Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет соответственно изменятся.

Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет. Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля.

Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15.

Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние. При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра. Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей.

Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ. Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора. Проверка схемы отключения аккумулятора при полной его зарядке Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5. Делитель для опорного напряжения собран на резисторах R7, R8 и напряжение на выводе 4 ОУ должно быть 4,5 В. Напряжение на выводе 3 А1.1, как Вы уже поняли, должно быть равно напряжению 4,5 в случае, когда напряжение на аккумуляторе достигнет величины 15,6 В для случая тока зарядки 0,3 А.

Для больших токов, напряжение будет большим и его нужно подбирать экспериментально. Более подробно этот вопрос рассмотрен в статье сайта. Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости. С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую. Схема зарядного устройства на конденсаторах без автоматического отключения Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения. Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6.

Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1. Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток. На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение.

Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В. При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора автоматическим самодельным ЗУ Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится. Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды. Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам.

Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Рассчитать время заряда аккумулятора с помощью онлайн калькулятора, выбрать оптимальный режим зарядки автомобильного аккумулятора и ознакомиться с правилами его эксплуатации Вы можете посетив статью сайта.

Зарядное устройство с регулировкой по сети Предлагаемым зарядным устройством (ЗУ) можно заряжать аккумуляторы емкостью от 1 до 100 Ач с напряжением от 1 до 12 В. В устройстве имеется автоматический режим работы для зарядки 12-вольтовых аккумуляторов. Автоматический режим удобен тем, что не нужно следить за зарядкой аккумулятора, пока он не зарядится (закипит). В автоматическом режиме при полной зарядке аккумулятора зарядное устройство отключает зарядный ток аккумулятора. Электрическая схема ЗУ показана на рисунке. С помощью симистора VS1 регулируют ток в первичной обмотке понижающего трансформатора Т1 и, соответственно, зарядный ток аккумулятора. Напряжение вторичной обмотки трансформатора Т1 выпрямляется диодным мостом VD7 и через амперметр РА и предохранитель FU2 подается на клеммы '+' и '-' устройства.

Симистор управляется с помощью широтно-импульсной модуляции. Управляющие импульсы вырабатываются генератором на транзисторе VT1 и усиливаются усилителем мощности на транзисторе VT2. Нагрузкой VT2 служит разделительный трансформатор Т2.

С вторичной обмотки трансформатора Т2 управляющие импульсы подаются на управляющий электрод симистора VS1. Частоту задающего генератора регулируют резистором R2. Питается схема генератора непосредственно от сети переменного тока 220 В через понижающие резисторы R4, R9 и диодный мост VD4. Для стабилизации выпрямленного напряжения, особенно в момент отключения усилителя мощности, служат стабилитроны VD5, VD6.

Выключатель SA1 служит для переключения режимов работы 'Ручной'/'Автоматический'. Оптотиристор VS2 выключает по питанию выходной каскад генератора VT2 в автоматическом режиме, а также разделяет первичную цепь понижающего трансформатора Т1 от вторичной. На транзисторах VT3, VT4 выполнено реле напряжения, которое при достижении на аккумуляторе напряжения 14,5.14,7 В отключает светодиод оптотиристора VS2 и, соответственно, тиристор, который выключает питание выходного каскада генератора. Симистор VS1 отключается, и зарядка аккумулятора прекращается. Спустя некоторое время (5. 10 мин), из-за саморазряда аккумулятора, напряжение на нем снижается.

При достижении 12,8.13,2 В реле напряжения срабатывает, и снова повторяется зарядный процесс до следующего отключения. Резистор R13 и конденсатор СЗ служат для сглаживания пульсаций на базе транзистора VT4 и предотвращают ложное срабатывание реле напряжения. Предохранитель FU1 предназначен для защиты первичной цепи от перегрузок трансформатора Т1 и непредвиденных коротких замыканий. Предохранитель FU2 предназначен для защиты от перегрузок во вторичной цепи во время коротких замыканий или подключения аккумулятора в неправильной полярности.

Диод VD10 защищает элементы схемы реле напряжения при подключении аккумулятора в неправильной полярности. Налаживание начинается в ручном режиме при замкнутом SA1. Знак Скоропортящийся Груз Вектор.

При правильно сфазированном трансформаторе Т2 во время регулировки тока резистором R2 устройство работает тихо. При неправильной фазировке наблюдаются скачки при регулировке тока и специфический рокот трансформатора Т1. При неправильной фазировке необходимо поменять местами концы первичной или вторичной обмоток трансформатора Т2.

При использовании более мощного симистора, чем указан на схеме, резистор R7 нужно замкнуть. В ручном режиме наладки устройства в качестве нагрузки можно применить автомобильные лампы. При налаживании устройства в автоматическом режиме SA1 разомкнут.

В качестве нагрузки устройства необходимо применить 12-вольтовый заряженный аккумулятор. С помощью подстроечного резистора R15 устанавливают режим, при котором устройство включается, светодиод VD3 светится. Светодиод из схемы можно убрать, закоротив при этом цепь, в которую он был включен. В этом случае контроль за включением и выключением ЗУ в автоматическом режиме можно вести по амперметру, предварительно установив соответствующий зарядный ток аккумулятора (10% от емкости аккумулятора).

Для ускоренного процесса наладки зарядный ток можно увеличить. Подключают вольтметр постоянного тока на выходе ЗУ или на клеммы аккумулятора. При достижении на аккумуляторе 14,5.14,7 В осторожно поворачивают ползунок подстроечного резистора R15 до выключения ЗУ. По вольтметру наблюдают, с какой скоростью уменьшается напряжение на аккумуляторе.

Чем медленнее уменьшается напряжение, тем лучше аккумулятор. При достижении на аккумуляторе напряжения 12,6.13,2 В ЗУ снова должно включиться. Проконтролируйте повторно, при каком напряжении выключается ЗУ. Если оно отличается от 14,5. 14,7 В, повторно подрегулируйте его подстроечным резистором R15. Если режим отключения реле времени устанавливается в крайнем положении ползунка подстроечного резистора R15, необходимо изменить его номинал. В качестве понижающего трансформатора можно применить трансформатор мощностью 180.200 Вт.

Первичная обмотка рассчитана на напряжение 220 В, а вторичная — на 20.24 В.В нашем варианте применяет силовые трансформаторы от черно-белых телевизоров ТС-1 80, ТС-200. Все вторичные обмотки удаляются.

Для того чтобы при разборке трансформатора не повредить магнитопровод, необходимо один конец магнитопровода через прокладки (бумага, ткань) как можно крепче зажать в тисках. По другому концу магнитопровода с помощью деревянной надставки и молотка производят удар. Если склеенные части магнитопровода не разошлась, необходимо повторить удар.

'Магнитный' клей на торцах магнитопровода необходимо удалить и места стыковки зачистить мелкой наждачной бумагой. При разборке магнитопроводов запомните или отметьте магнитопроводы так, чтобы при сборке каждый магнитопровод попал на свое место. При сборке применять магнитопроводящий клей необязательно. Нужно только позаботиться, чтобы стыкуемые поверхности были достаточно чистыми и установились на прежние места. После снятия вторичных обмоток с каркасов слои прокладок между первичными обмотками необходимо оставить. Для более надежной изоляции между первичной и вторичной обмотками можно снять экранирующую обмотку (фольгу), расположенную между слоями изолирующих прокладок.

На каждый каркас наматывают по 33 витка вторичной обмотки проводом в эмалевой изоляции диаметром 2.2,2 мм в одну сторону (в сторону намотки изолирующей прокладки). После сборки трансформатора секции 110 В первичной обмотки соединяют последовательно перемычками 'начало с началом' или 'конец с концом'. Секции намотаны) катушек вторичной обмотки также соединяют последовательно. В выпрямительном мосте VD7 применяются диоды с рабочим током 10 А и напряжением не менее 50 В. При выборе диодов необходимо помнить правило: лучше те диоды, хоть и с одинаковым рабочим током, у которых больше рабочее напряжение. С таких диодов можно снять большую мощность, и они меньше греются.

Выпрямительный мост собирают на текстолитовой пластине, на которую устанавливают радиаторы. Радиаторы П-образной формы изготавливают из алюминиевой жести толщиной 1.3 мм и площадью 50. Два диода, соединяемых катодами (плюсовой конец), можно подключить вместе на общий радиатор или даже на корпус шасси. В таком случае '+' будет на корпусе, зато придется изготавливать лишь два радиатора, изолированных друг от друга.

Слабым местом в конструкции ЗУ является амперметр с шунтом. Необходимо также помнить, что амперметры магнитоэлектрической системы в цепях асимметричных токов, как правило, занижают показания величины эффективного тока почти в два раза. Поэтому при установке магнитоэлектрических амперметров требуется корректировка шкалы для устройств с асимметричными токами. Для измерения зарядного тока (асимметричного) автор пользуется амперметрами электромагнитной системы типа 'Э'. Они, в основном, применяются в цепях переменного тока. Для измерения тока в несколько десятков ампер выпускаются амперметры 'прямого включения'. Хотя в электромагнитных амперметрах класс точности не очень высокий, для зарядных устройств они годятся.

Как обычно, не всегда под рукой найдется амперметр постоянного тока на 10. Автор изготавливает их из других магнитоэлектрических приборов типа 'М' — вольтметров, миллиамперметров, микроамперметров. Для этого необходимо корректировать шкалы и самостоятельно изготовлять шунты. Шунты автор изготовляет из нихромовой проволоки диаметром 1,5.2 мм. Чем больше удельное сопротивление нихромовой проволоки, тем меньше она притягивается постоянным магнитом.

При изготовлении самодельного шунта необходимо конец нихромовой проволоки длиной 2.3 см хорошо зачистить мелкой наждачной бумагой. С помощью травленной цинком соляной кислоты (ZnCI) и припоя залудить этот конец, затем круглогубцами изогнуть ушко (клемму) нужного диаметра под клемму амперметра.

Длина залуженного конца от клеммы будущего амперметра 1. Это нужно для того, чтобы шунт в этом месте не нагревался и, соответственно, не нагревал амперметр. Отступая от залуженного конца нихрома на расстояние 20.30 см, зачищают участок проволоки длиной 2.3 см, не отрезая от бухты (катушки).

Зачищенный участок изгибают вдвое под клемму амперметра. С помощью шайб и гаек приготовленный кусок нихромовой проволоки подключают к амперметру. Собирают схему для зарядки аккумулятора, включив последовательно в цепь с налаживаемым амперметром образцовый амперметр. В качестве образцового амперметра автор применяет амперметр прямого включения электромагнитной системы с пределом измерения 10 А. Ручку регулировки тока ЗУ устанавливают в крайнее левое положение и включают ЗУ в сеть. Медленно увеличивая зарядный ток аккумулятора, сравнивают показания образцового амперметра с показаниями налаживаемого. Увеличивая или уменьшая длину проволоки шунта, добиваются одинаковых показаний налаживаемого и образцового амперметров по средине шкалы, например 5 А.

После установления необходимой длины проволоки шунта ее увеличивают для зачистки и лужения конца (2.3 см). Провод нужной длины отрезают, делают клемму и наматывают на круглый стержень соответствующего диаметра. Выводные концы шунта должны быть такой длины, чтобы спираль шунта располагалась выше прибора и не нагревала его. Шкалу прибора можно откорректировать или переградуировать по своему усмотрению. Трансформатор Т2 наматывают на ферритовом кольце 1000.2000 НМ диаметром 20.30 мм. Первичную и вторичную обмотки наматывают проводом ПЭВ-2 диаметром 0,2 мм по 60 витков.

Печатную плату изготавливают из фольгированного текстолита толщиной 1. При необходимости увеличения мощности ЗУ применяют более мощные симистор VS1, понижающий трансформатор Т1, диоды моста VD7 и, соответственно, увеличивают рабочие токи предохранителей.

    Search